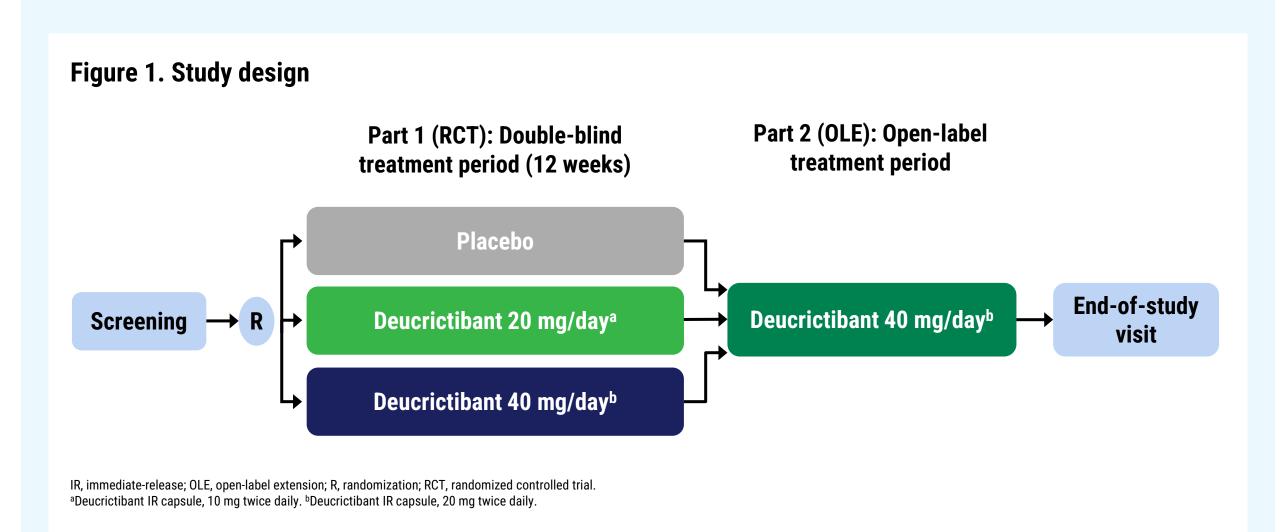
CHAPTER-1 Phase 2 Trial of Oral Bradykinin B2 Receptor Antagonist Deucrictibant for Hereditary Angioedema Prophylaxis

H. James Wedner¹, John Anderson², Hugo Chapdelaine³, Markus Magerl^{4,5}, Michael E. Manning⁶, Marc A. Riedl⁷, Peng Lu⁸, Emel Aygören-Pürsün⁹


1Washington University School of Medicine, Division of Allergy and Immunology, Department of Medicine, St. Louis, MO, USA; 2AllerVie Health, Clinical Research Center of Alabama, Birmingham, AL, USA; 3Universität zu Berlin, Berlin, Berlin, Germany; 6Ilergology, Corporate Member of Freie University Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; 6Ilergy and Immunology, Corporate Member of Freie University Berlin and Humboldt-University Department for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany; 6Ilergy, Asthma and Immunology, La Jolla, CA, USA; 9University Frankfurt, Germany Immunology, La Jolla, CA, USA; 9University Frankfurt, Department for Children and Adolescents, Goethe University Frankfurt, Frankfurt, Germany; 6Ilergy, Asthma and Immunology, La Jolla, CA, USA; 9University Frankfurt, Germany Immunology, La Jolla, CA, USA; 9University Frankfurt, Germany Immunology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Berlin, Germany; 6Ilergy and Immunology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; 9Universität zu Berlin, Berlin, Germany; 9Universität zu Berlin, German

Rationale

- Excess bradykinin is the main mediator of the clinical manifestations of bradykinin-mediated angioedema attacks, including hereditary angioedema (HAE).¹
- Despite the availability of approved therapies, an unmet need remains for additional prophylactic treatments combining injectable-like efficacy, a well-tolerated profile, and ease of administration.²⁻⁵
- Deucrictibant is a selective, orally-administered bradykinin B2 receptor antagonist under development for prophylactic and on-demand treatment of HAE attacks.^{3,6-12}

Methods

- CHAPTER-1 (NCT05047185)^{12*}, is a two-part, Phase 2 study evaluating the efficacy, safety, and tolerability of deucrictibant for long-term prophylaxis against angioedema attacks in HAE-1/2.
- Eligible participants were ≥18 and ≤75 years, diagnosed with HAE-1/2, were not receiving other prophylactic treatments at the time of screening, and experienced ≥3 attacks within the past three consecutive months prior to screening or ≥2 attacks during screening (up to 8 weeks).
- In the double-blind, placebo-controlled part 1 (randomized controlled trial; RCT), participants were randomized to receive one of two doses of double-blinded deucrictibant (20 or 40 mg/day) or placebo for 12 weeks of treatment (**Figure 1**).

- Deucrictibant immediate-release (IR) capsule was dosed twice per day as a proof-of-concept for the once-daily deucrictibant extended-release tablet (the intended formulation of deucrictibant for prophylactic HAE treatment).^{13,14}
- The primary endpoint of the RCT was the time-normalized number of investigator-confirmed HAE attacks.
- The time-normalized number of moderate and severe HAE attacks, HAE attacks treated with on-demand medication, and percentage of days with symptoms were among the secondary endpoints.
- In the ongoing part 2 open-label extension (OLE) of the CHAPTER-1 study, ¹² participants may continue treatment with deucrictibant 40 mg/day.

Acknowledgments: Medical writing services were provided by Holly Richendrifer, Ph.D., on behalf of Two Labs Pharma Services.

Results

- Thirty-four participants were enrolled and randomized at sites in Canada, Europe, the United Kingdom, and the United States.
- The primary endpoint was met, with deucrictibant 20 mg/day and 40 mg/day significantly reducing the monthly attack rate by 79.3% (P=0.0009) and 84.5% (P=0.0008) compared with placebo, respectively (**Figure 2** and **Table 1**).



 Table 1. Significant reduction in overall attack rate (primary endpoint)

		Deucrictibant		
	Placebo (N=11)	20 mg/day ^b (N=11)	40 mg/day ^c (N=12)	
Attack rate ^a				
BL, median	1.67	1.67	1.74	
On study, median	2.15	0	0.15	
Change from BL, median	0.33	-1.34	-1.59	
% change from BL, median	17	-100	-96	
Model-based inference				
LS mean	1.94	0.40	0.30	
% reduction vs placebo	_	79.3	84.5	
P value	_	0.0009	0.0008	

Results

• In analyses of the secondary endpoints, deucrictibant 40 mg/day reduced the rate of "moderate and severe" attacks by 92.3% (**Figure 3**) and reduced the rate of attacks treated with on-demand medication by 92.6% (**Figure 4**).

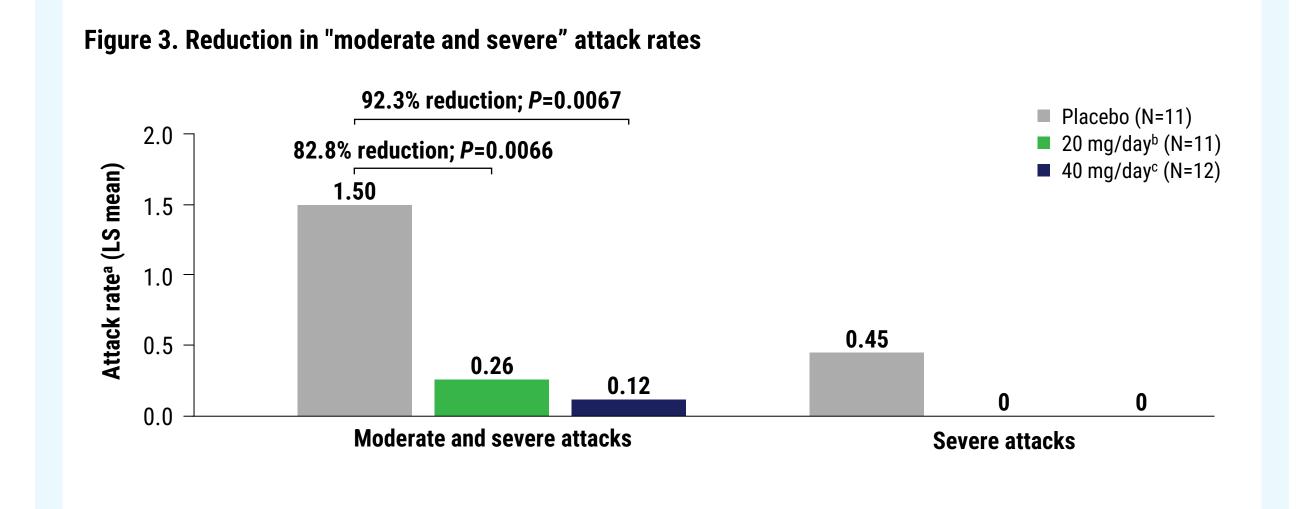
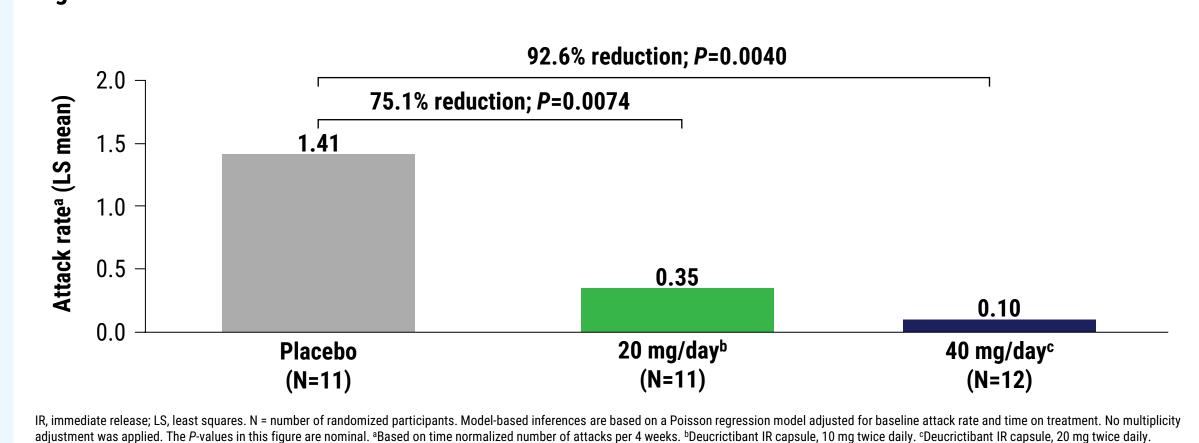
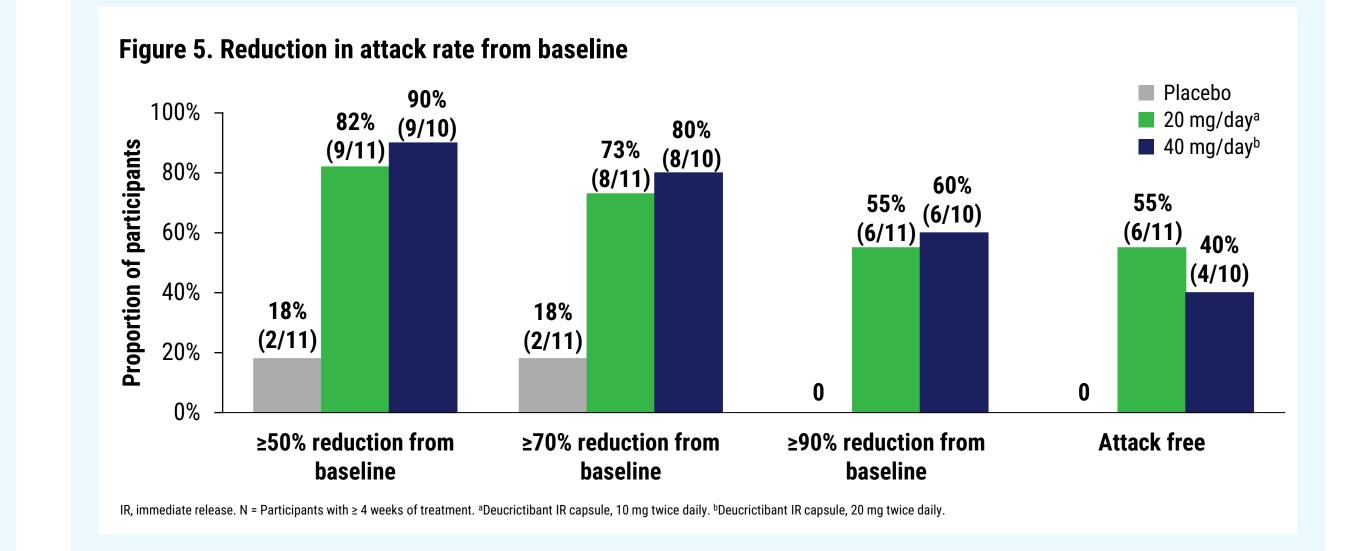
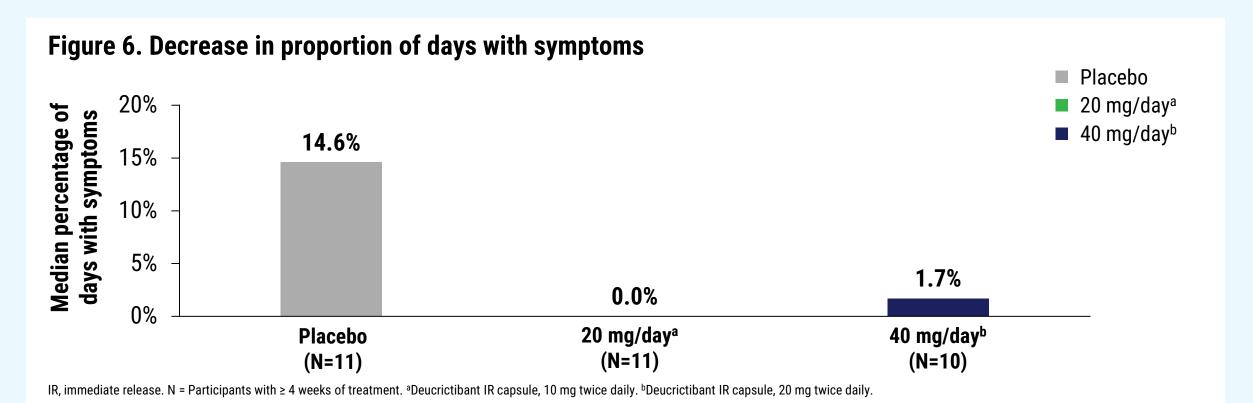




Figure 4. Reduction in attacks treated with on-demand medication



• At 12 weeks, ≥50%, ≥70%, and ≥90% reduction in attack rate from baseline was achieved in 90%, 80%, and 60% of 10 participants receiving deucrictibant 40 mg/day vs 18%, 18%, and 0% of 11 participants receiving placebo (**Figure 5**).

Results

• Deucrictibant 20 mg/day and 40 mg/day decreased the median percentage of days with symptoms to 0.0% and 1.7%, respectively, compared with 14.6% with placebo (**Figure 6**).

- Deucrictibant was well tolerated at both doses, and all reported treatment-related treatment-emergent adverse events (TEAEs) were mild in severity (**Table 2**).
- No serious TEAEs, no severe TEAEs, and no TEAEs leading to treatment discontinuation, study withdrawal, or death were reported (Table 2).

			Deucrictibant			
	Placebo (N=11)		20 mg/daya (N=11)		40 mg/dayb (N=12)	
	Participants,	Events,	Participants,	Events,	Participants,	Events,
Adverse events	n (%)	n	n (%)	n	n (%)	n
TEAEs	7 (63.6)	16	6 (54.5)	11	7 (58.3)	12
Treatment-related TEAEs	1 (9.1)	1	2 (18.2)	2	1 (8.3)	1
Nausea	0	0	1 (9.1)	1	0	0
Increased GGT	0	0	0	0	1 (8.3)	1
Dizziness postural	0	0	1 (9.1)	1	0	0
Headache	1 (9.1)	1	0	0	0	0
Serious TEAEs	0	0	0	0	0	0
Treatment-related serious TEAEs	0	0	0	0	0	0
TEAEs leading to study drug discontinuation, study withdrawal, or death	0	0	0	0	0	0

GGT, gamma-glutamyltransferase; IR, immediate-release; TEAE, treatment-emergent adverse event. N = number of participants who received at least one dose of blinded study treatment. ^aDeucrictibant IR capsule, 10 mg twice daily.

Conclusions

- In the Phase 2 CHAPTER-1 trial, deucrictibant significantly reduced the occurrence of HAE attacks, achieved clinically meaningful reductions in occurrence of moderate and severe HAE attacks and HAE attacks treated with on-demand medication, and decreased the time with HAE symptoms.
- CHAPTER-1 results provide evidence on the efficacy and safety of deucrictibant for the prevention of HAE attacks and support its further development as a potential prophylactic therapy for HAE.

References

1. Busse PJ, et al. *N Engl J Med*. 2020;382:1136-48. **2.** Bouillet L, et al. *Allergy Asthma Proc*. 2022;43:406-12. **3.** Betschel SD, et al. *J Allergy Clin Immunol Pract*. 2023;11:2315-25. **4.** Center for Biologics Evaluation and Research. The voice of the patient – hereditary angioedema. US Food and Drug Administration; May 2018. Accessed September 26, 2024. https://www.fda.gov/media/113509/download; **5.** Covella B, et al. *Future Pharmacol*. 2024;4:41-53. **6.** Lesage A, et al. *Front Pharmacol*. 2020;11:916. **7.** Lesage A, et al. *Int Immunopharmacol*. 2022;105:108523. **8.** https://clinicaltrials.gov/study/NCT04618211. Accessed September 26, 2024. **9.** https://clinicaltrials.gov/study/NCT06343779. Accessed September 26, 2024. **11.** Maurer M, et al. Presented at: AAAAI; February 24–27, 2023; San Antonio, TX, USA. **12.** https://www.clinicaltrials.gov/study/NCT05047185. Accessed September 26, 2024. **13.** Groen K, et al. Presented at: ACAAI; November 10–14, 2022; Louisville, KY, USA. **14.** Petersen RS, et al. Presented at: Bradykinin Symposium; September 5–6, 2024; Berlin, Germany.

This presentation includes data for an investigational product not yet approved by regulatory authorities.

COI: Grants/research support, honoraria or consultation fees, sponsored speaker bureau, Flack and the consultation fees, Subdiving th