Efficacy and safety of bradykinin B2 receptor antagonism with deucrictibant immediate-release capsule for treatment of hereditary angioedema attacks: results of RAPIDe-1 phase 2 trial

Marc A. Riedl¹, John Anderson², Joshua S. Jacobs³, H. Henry Li⁴, Michael E. Manning⁵, Emel Aygören-Pürsün⁶, Maria Luisa Baeza⁷, Laurence Bouillet⁸, Hugo Chapdelaine⁹, Danny M. Cohn¹⁰, Aurélie Du-Thanh¹¹, Olivier Fain¹², Henriette Farkas¹³, Jens Greve¹⁴, Mar Guilarte¹⁵, David Hagin¹⁶, Roman Hakl¹⁷, Aharon Kessel¹⁸, Sorena Kiani-Alikhan¹⁹, Pavlina Králícková²⁰, Ramon Lleonart²¹, Markus Magerl²², Avner Reshef²³, Bruce Ritchie²⁴, Giuseppe Spadaro²⁵, Maria Staevska²⁶, Petra Staubach²⁷, Marcin Stobiecki²⁸, Gordon L. Sussman²⁹, Michael D. Tarzi³⁰, Anna Valerieva²⁶, William H. Yang³¹, Marie-Helene Jouvin³², Rafael Crabbé³³, Simone van Leeuwen³⁴, Huaihou Chen³², Li Zhu³⁵, Jochen Knolle³⁶, Anne Lesage³⁷, Peng Lu³⁵, Marcus Maurer²²

¹La Jolla, CA, United States of America; ²Birmingham, AL, United States of America; ³Walnut Creek, CA, United States of America; ⁵Scottsdale, AZ, United States of America; ⁶Frankfurt, Germany; ⁷Madrid, Spain; ⁸Grenoble, France; ⁹Montréal, QC, Canada; ¹⁰Amsterdam, The Netherlands; ¹¹Montpellier, France; ¹²Paris, France; ¹²Paris, France; ¹³Budapest, Hungary; ¹⁴Ulm, Germany; ¹⁵Barcelona, Spain; ¹⁶Tel Aviv, Israel; ¹⁷Brno, Czech Republic; ²¹Barcelona, Spain; ²²Berlin, Germany; ²³Ashkelon, Israel; ²⁴Edmonton, AB, Canada; ²⁵Napoli, Italy; ²⁶Sofia, Bulgaria; ²⁷Mainz, Germany; ²⁸Krakow, Poland; ²⁹Toronto, ON, Canada; ³⁰Brighton, United Kingdom; ³¹Ottawa, ON, Canada; ³⁰Bassins, Switzerland; ³⁴Woerden, The Netherlands; ³⁵Lexington, MA, United States of America; ³⁶Frankfurt, Germany; ³⁷Schilde, Belgium

Introduction

- Excess bradykinin is the cause of signs and symptoms of swelling during HAE attacks¹ and efficacy and tolerability of bradykinin B2 receptor antagonism for treatment of HAE attacks has been proven in clinical trials and ~15 years of post-marketing experience²⁻⁴
- International guidelines recommend that HAE attacks are treated as early as possible⁵⁻⁷
- Burden associated with parenteral administration of approved on-demand medications⁸⁻¹² leads to treatment of many HAE attacks being delayed or forgone¹²⁻¹⁵
- An unmet need exists for on-demand oral therapies that are effective and well-tolerated and may reduce the treatment burden enabling prompt administration

Methods

- RAPIDe-1* (NCT0461821116) was a Phase 2, double-blind, placebo-controlled, randomized, crossover, dose-ranging trial of deucrictibant immediate-release (IR) capsule (PHVS416) for treatment of angioedema attacks in patients with HAE-1/2.
- Key inclusion criteria: diagnosis of HAE-1/2; ≥3 attacks in the last 4 months or ≥2 attacks in the last 2 months prior to screening; access to and experience with use of on-demand medications.
- Key exclusion criteria: pre-enrolment use of: C1-inhibitor (C1-INH) for acute use or short-term prophylaxis (7 days); C1-INH for long-term prophylaxis, oral kallikrein inhibitors, attenuated androgens, anti-fibrinolytics (2 weeks); monoclonal antibodies for HAE (12 weeks); pregnancy or breast-feeding; conditions interfering with participant's safety/ability to participate in the study.
- A primary analysis included 147 qualifying HAE attacks treated by 62 participants with double-blinded placebo or deucrictibant IR capsule 10, 20, or 30 mg (modified intent-to-treat analysis, mITT = all randomized participants with ≥1 treated HAE attack and non-missing VAS results at both pre-treatment and ≥1 post-treatment time point of that attack).

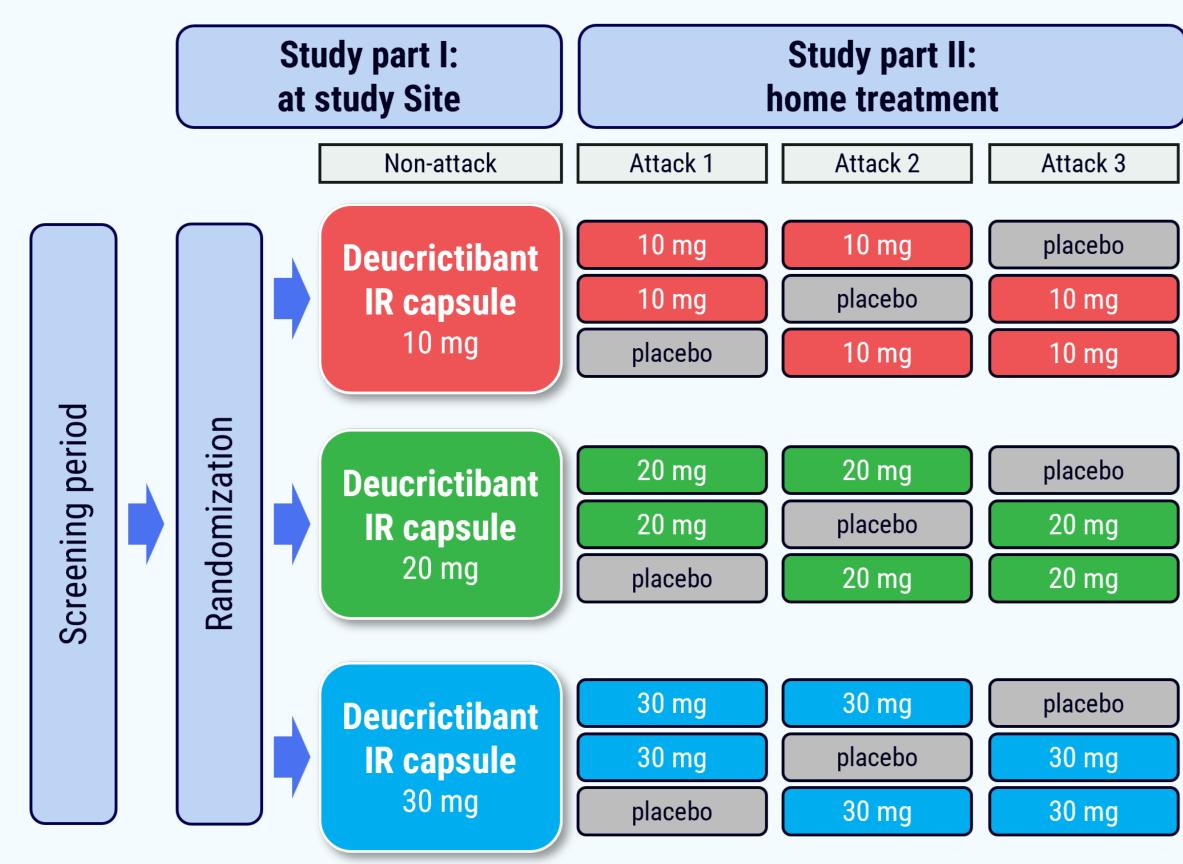


Figure 1. RAPIDe-1 trial design schematic

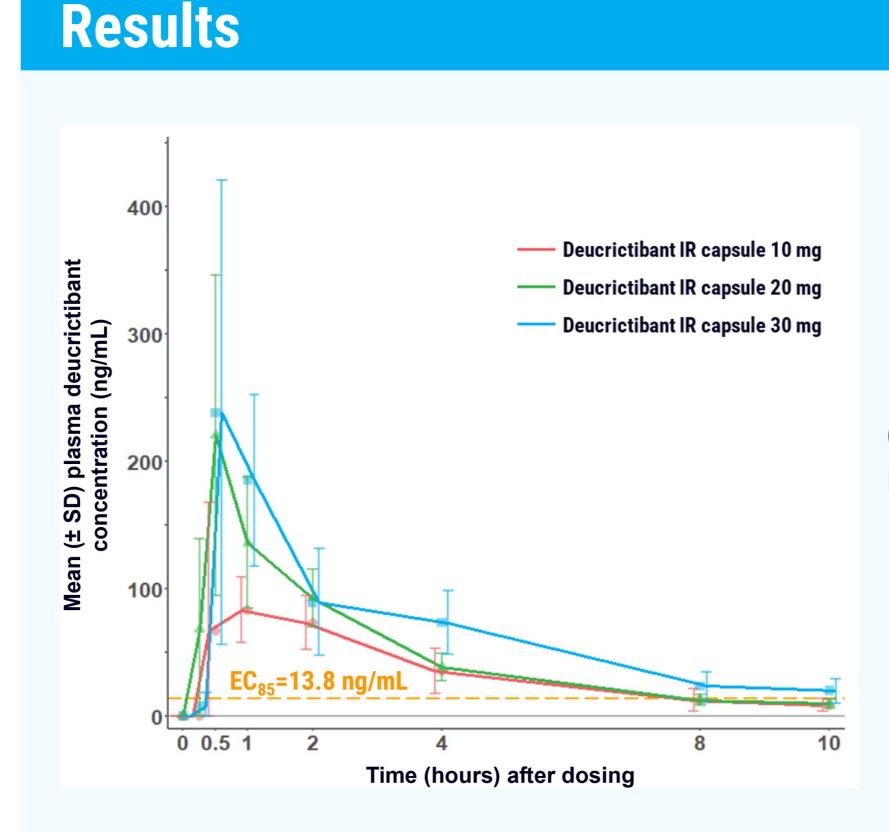
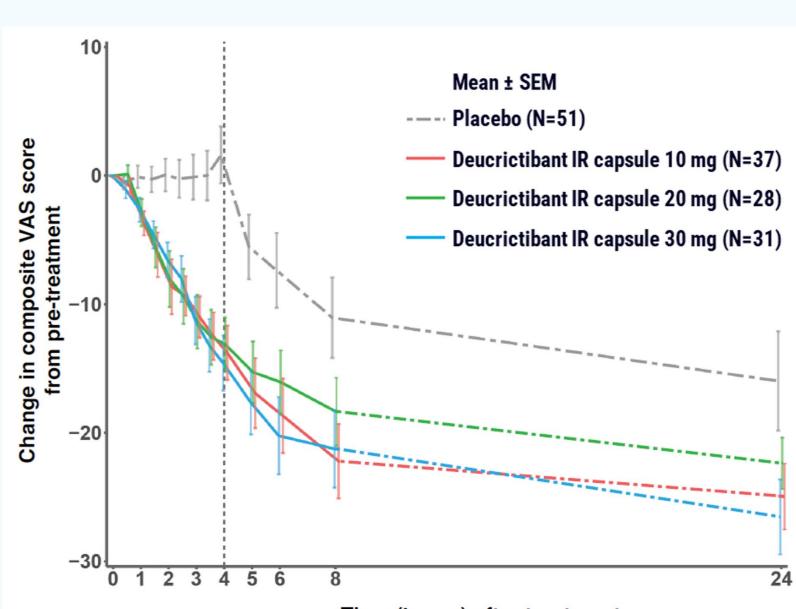



Figure 2. Pharmacokinetic profile of single dose of deucrictibant IR capsule 10, 20 or 30 mg in HAE patients

-16.28 (-21.27, -11.29) p < 0.0001

Deucrictibant IR capsule 30 mg

Median VAS-3 at baseline ranged from 24.33 to 27.00 across deucrictibant IR capsule doses (10, 20, and 30 mg). [†]Nominal p-value; N = The number of attacks in the mITT Analysis Set. Figure is based on descriptive summary of mean and SEM (standard error of the mean). Least-squares mean differences, CIs, and p-values come from a mixed-effects model with repeated measures (MMRM). Data after rescue medication

Figure 3 and Table 1. Results of primary endpoint (reduction of attack symptoms by VAS-3)

	Placebo N=51	Deucrictibant IR capsule 10 mg N=37	Deucrictibant IR capsule 20 mg N=28	Deucrictibant IR capsule 30 mg N=31
Time to onset of symptom relief by VAS-3 ≥30% reduction ^a				
Median time in hours (95% CI)	8.0 (7.6, 46.9)	2.1 (1.5, 2.9)	2.7 (1.9, 3.5)	2.5 (1.9, 3.8)
Hazard ratio		3.81	3.08	3.61
p-value		<0.0001	0.0021	<0.0001
Time to VAS-3 ≥50% reduction ^a				
Median time in hours (95% CI)	22.8 (20.0, 24.1)	3.3 (2.4, 3.9)	4.0 (2.9, 6.0)	4.0 (3.3, 5.8)
Hazard ratio		4.55	3.65	3.87
p-value		<0.0001	0.0003	< 0.0001
Time to almost complete or complete symptom relief by VAS-3 ^a				
Median time in hours (95% CI)	42.0 (22.0, 48.1)	5.8 (3.6, 7.5)	20.0 (4.5, 20.0)	20.0 (6.0, 20.1)
Hazard ratio	, , ,	5.09	2.25	2.65
p-value		<0.0001	0.0127	0.0001
Change in MSCS ^b score at 4 hours ^c				
Least-squares mean difference: Deucrictibant IR capsule – placebo		-0.79	-0.61	-0.39
p-value		<0.0001	0.0008	0.0291
TOS ^d at 4 hours ^c				
Least-squares mean difference: Deucrictibant IR capsule – placebo		64.13	62.69	71.06
p-value		<0.0001	<0.0001	<0.0001

N = Number of attacks included in the mITT Analysis Set. p-values for deucrictibant IR capsule 20mg and 30mg are based on statistical tests in the pre-specified multiple comparison procedure, other p-values are nominal. ^aHazard ratios and p-values are based on marginal Cox proportional hazards models. ^bMinimal clinically important difference for MSCS = -0.30. ^cp-values are based on mixed-effects models for repeated measures. ^dMinimal clinically important difference for TOS = 30.

Table 2. Results of key secondary efficacy endpoints

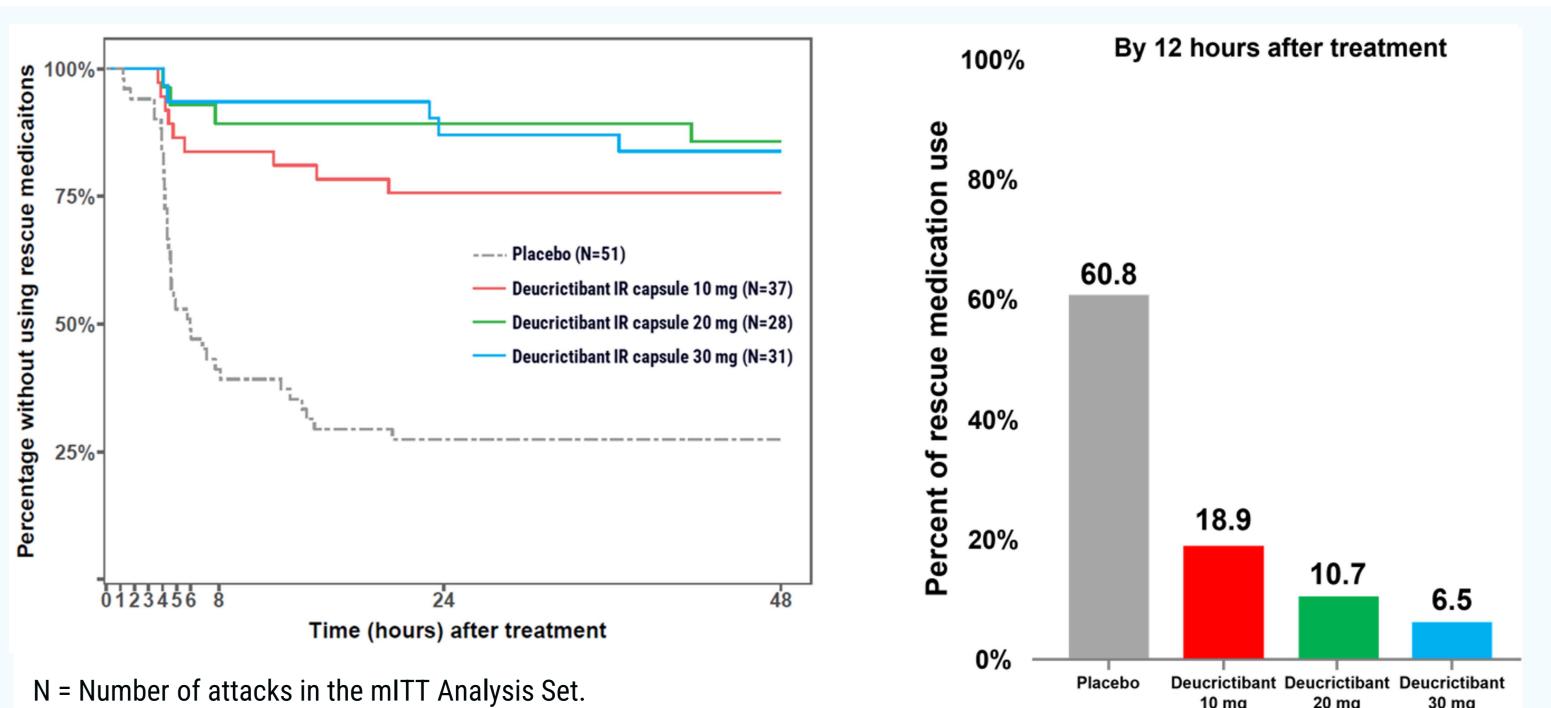


Figure 4. Additional secondary endpoint: use of rescue medication

	Study part I (non-attack) Deucrictibant IR capsule			Study part II (attacks 1, 2, 3)			
					Deucrictibant IR capsule		
	10 mg N=23	20 mg N=24	30 mg N=25	Placebo N=53	10 mg N=38	20 mg N=29	30 mg N=36
Subjects (study part I) or attacks (study part II) with any treatment-related AEs	1 (4.3%)	1 (4.2%)	-	1 (1.9%)	-	-	1 (2.8%)
Headache	-	1 (4.2%)	-	-	-	-	-
Nausea	1 (4.3%)	-	-	-	-	-	1 (2.8%)
Vomiting	-	-	-	-	-	-	1 (2.8%)
Fatigue	-	-	-	-	-	-	1 (2.8%)
Blister	-	-	-	1 (1.9%)	-	-	-

N = Number of participants (Part I) and number of attacks (Part II) in the Safety Analysis Set. The Safety Analysis Set includes all randomized participants who received ≥1 dose of study drug between Part I and Part II.

Table 3. Treatment-related adverse events within 48 hours after administration of study drug

Conclusions

- The Phase 2 RAPIDe-1 trial for treatment of attacks in patients with HAE-1/2 met primary and all key secondary endpoints, providing evidence on the efficacy and safety of deucrictibant IR capsule in treating HAE attacks and supporting its further development as a potential on-demand therapy for HAE.
- The U.S. FDA has placed a hold on clinical trials of deucrictibant for long-term prophylaxis in the United States of America. For the latest information and updates visit: https://ir.Pharvaris.com/.

References

¹Busse PJ et al. N Engl J Med 2020;382:1136-48; ²Cicardi M et al. N Engl J Med 2010;363:532-41; ³Lumry WR et al. Ann Allergy Asthma Immunol 2011;107:529-37; ⁴Maurer M et al. Clin Exp Allergy 2022;52:1048-58. ⁵Betschel S et al. Allergy Asthma Clin Immunol 2019;15:72; ⁶Busse PJ et al. J Allergy Clin Immunol Pract 2021;9:132-50; ⁷Maurer M et al. Allergy 2022;77:1961-90; ⁸Berinert[®] [package insert], https://labeling.cslbehring.com/pi/us/berinert/en/berinert-prescribing-information.pdf (accessed 18 July 2023); ⁹Firazyr[®] [package insert], https://www.shirecontent.com/PI/PDFs/Firazyr_USA_ENG.pdf (accessed 18 July 2023); ¹⁰Kalbitor[®] [package insert], https://www.ruconest.com/wp-content/uploads/Ruconest_PI_Apr2020.pdf (accessed 18 July 2023); ¹²Burnette A et al. AAAAI 2023; ¹³Tuong LA et al. Allergy Asthma Proc 2014;35:250-4; ¹⁴US Food and Drug Administration, Center for Biologics Evaluation and Research. The voice of the patient–Hereditary angioedema. May 2018. https://www.fda.gov/media/113509/download (accessed 18 July 2023); ¹⁵Radojicic C et al. AAAAI 2023.